给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
示例 1:
输入: nums1 = [1,3], nums2 = [2]
输出: 2.00000
解释: 合并数组 = [1,2,3] ,中位数 2
示例 2:
输入: nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: if len(nums1) > len(nums2): nums1, nums2 = nums2, nums1
m, n = len(nums1), len(nums2) total_left = (m + n + 1) // 2 left, right = 0, m
while left < right: partition1 = (left + right + 1) // 2 partition2 = total_left - partition1
if nums1[partition1 - 1] > nums2[partition2]: right = partition1 - 1 else: left = partition1
partition1, partition2 = left, total_left - left
max_left_1 = nums1[partition1 - 1] if partition1 > 0 else float('-inf') min_right_1 = nums1[partition1] if partition1 < m else float('inf') max_left_2 = nums2[partition2 - 1] if partition2 > 0 else float('-inf') min_right_2 = nums2[partition2] if partition2 < n else float('inf')
if (m + n) % 2 == 1: return max(max_left_1, max_left_2) else: return (max(max_left_1, max_left_2) + min(min_right_1, min_right_2)) / 2
|
